
11/5/2008

1

Inheritance

Lecture 9

Object-Oriented Programming

Agenda
• Inheritance

• Motivation

• Code Example

• Object-oriented terminology

• Case Study of a class roaster

• The Protected Modifier

• The instanceof Operator

• Inheritance and Member Accessibility

• The Effect of Three Visibility

• Inheritance and Constructors

• Abstract Superclasses and Abstract Methods

• Inheritance as Form of Abstraction

• Inherit This!

• Is-a Versus Has-a Relationships

• Initializing Data Fields in a Subclass

• Method Overriding

• Method Overloading
Lecture 9 Object-Oriented Programming 2

11/5/2008

2

3

Inheritance

• Inheritance allows a software developer to derive a new

class from an existing one

• The existing class is called the parent class, or superclass,

or base class

• The derived class is called the child class or subclass.

• As the name implies, the child inherits characteristics of

the parent

• That is, the child class inherits the methods and data

defined for the parent class
Lecture 9 Object-Oriented Programming

Lecture 9 Object-Oriented Programming 4

Inheritance

• To tailor a derived class, the programmer can add

new variables or methods, or can modify the

inherited ones

• Software reuse is at the heart of inheritance

• By using existing software components to create

new ones, we capitalize on all the effort that went

into the design, implementation, and testing of the

existing software

11/5/2008

3

Lecture 9 Object-Oriented Programming 5

Motivation

• Consider a transportation computer game

– Different types of vehicles:

• Planes

– Jets, helicopters, space shuttle

• Automobiles

– Cars, trucks, motorcycles

• Trains

– Diesel, electric, monorail

• Ships

– …

• Let’s assume a class is written for each type of vehicle

Lecture 9 Object-Oriented Programming 6

More on classes vs. objects

11/5/2008

4

Lecture 9 Object-Oriented Programming 7

Motivation
• Sample code for the types of planes:

– fly()

– takeOff()

– land()

– setAltitude()

– setPitch()

• Note that a lot of this code is common to all types of planes

– They have a lot in common!

– It would be a waste to have to write separate fly() methods for each

plane type

• What if you then have to change one – you would then have to change

dozens of methods

Lecture 9 Object-Oriented Programming 8

Motivation
• Indeed, all vehicles will have similar methods:

– move()

– getLocation()

– setSpeed()

– isBroken()

• Again, a lot of this code is common to all types of vehicles

– It would be a waste to have to write separate move() methods for each vehicle

type

• What if you then have to change one – you would then have to change dozens of

methods

• What we want is a means to specify one move() method, and have each

vehicle type inherit that code

– Then, if we have to change it, we only have to change one copy

11/5/2008

5

Lecture 9 Object-Oriented Programming 9

Motivation

Provides:Provides:
move()move()

getLocation()getLocation()
setSpeed()setSpeed()
isBroken()isBroken()

Provides:
fly()

takeOff()
land()

setAltitude()
setPitch()

Provides:
derail()

getStation()

Provides:
oilChange()
isInTraffic()

Lecture 9 Object-Oriented Programming 10

Motivation

• What we will do is create a “parent” class and a

“child” class

• The “child” class (or subclass) will inherit the

methods (etc.) from the “parent” class (or

superclass)

• Note that some classes (such as Train) are both

subclasses and superclasses

11/5/2008

6

Lecture 9 Object-Oriented Programming 11

Inheritance code
class Vehicle {

...

}

class Train extends Vehicles {

...

}

class Monorail extends Train {

...

}

Lecture 9 Object-Oriented Programming 12

About extends

• If class A extends class B

– Then class A is the subclass of B

– Class B is the superclass of class A

– A “is a” B

– A has (almost) all the methods and variables that B has

• If class Train extends class Vehicle

– Then class Train is the subclass of Vehicle

– Class Vehicle is the superclass of class Train

– Train “is a” Vehicle

– Train has (almost) all the methods and variables that Vehicle has

11/5/2008

7

Lecture 9 Object-Oriented Programming 13

Object-oriented terminology

• In object-oriented programming languages, a class created

by extending another class is called a subclass

• The class used for the basis is called the superclass

• Alternative terminology

– The superclass is also referred to as the base class

– The subclass is also referred to as the derived class

Electric Train Vehicle

Lecture 9 Object-Oriented Programming 14

Like an Onion

Vehicle

Methods and Variables

Train

Methods VariablesMethods Variables

Electric

11/5/2008

8

Lecture 9 Object-Oriented Programming 15

Defining Classes with Inheritance

• Case Study:

– Suppose we want implement a class roster that contains

both undergraduate and graduate students.

– Each student’s record will contain his or her name,

three test scores, and the final course grade.

– The formula for determining the course grade is

different for graduate students than for undergraduate

students.

Lecture 9 Object-Oriented Programming 16

Modeling Two Types of Students

• There are two ways to design the classes to

model undergraduate and graduate students.

– We can define two unrelated classes, one for

undergraduates and one for graduates.

– We can model the two kinds of students by using

classes that are related in an inheritance hierarchy.

• Two classes are unrelated if they are not

connected in an inheritance relationship.

11/5/2008

9

Lecture 9 Object-Oriented Programming 17

Classes for the Class Roster

• For the Class Roster sample, we design three classes:
– Student

– UndergraduateStudent

– GraduateStudent

• The Student class will incorporate behavior and data

common to both UndergraduateStudent and

GraduateStudent objects.

• The UndergraduateStudent class and the

GraduateStudent class will each contain behaviors and

data specific to their respective objects.

Lecture 9 Object-Oriented Programming 18

Inheritance Hierarchy

11/5/2008

10

Lecture 9 Object-Oriented Programming 19

The Protected Modifier

• The modifier protected makes a data member

or method visible and accessible to the instances

of the class and the descendant classes.

• public data members and methods are

accessible to everyone.

• private data members and methods are

accessible only to instances of the class.

Lecture 9 Object-Oriented Programming 20

Creating the roster Array

• We can maintain our class roster using an array, combining

objects from the Student, UndergraduateStudent, and

GraduateStudent classes.

Student roster = new Student[40];

. . .

roster[0] = new GraduateStudent();

roster[1] = new UndergraduateStudent();

roster[2] = new UndergraduateStudent();

. . .

11/5/2008

11

Lecture 9 Object-Oriented Programming 21

State of the roster Array

• The roster array with elements referring to instances of

GraduateStudent or UndergraduateStudent classes.

Lecture 9 Object-Oriented Programming 22

The instanceof Operator

• The instanceof operator can help us learn the class

of an object.

• The following code counts the number of

undergraduate students.

int undergradCount = 0;

for (int i = 0; i < numberOfStudents; i++) {

if (roster[i] instanceof UndergraduateStudent) {

undergradCount++;

}

}

11/5/2008

12

Lecture 9 Object-Oriented Programming 23

Inheritance and Member

Accessibility
• We use the following visual representation of inheritance to illustrate data

member accessibility.

Lecture 9 Object-Oriented Programming 24

The Effect of Three Visibility

Modifiers

11/5/2008

13

Lecture 9 Object-Oriented Programming 25

Accessibility of Super from Sub

• Everything except the private members of the Super class is

visible from a method of the Sub class.

Lecture 9 Object-Oriented Programming 26

Accessibility from Another Instance

• Data members accessible from an instance are also accessible

from other instances of the same class.

11/5/2008

14

Inheritance Quiz
public class A {

public A() { System.out.println("I'm A"); }

}

public class B extends A {

public B() { System.out.println("I'm B"); }

}

public class C extends B {

public C() { System.out.println("I'm C"); }

}

What does this print out?

C x = new C();

I'm A

I'm B

I'm C

Lecture 9 27Object-Oriented Programming

Lecture 9 Object-Oriented Programming 28

Inheritance and Constructors

• Unlike members of a superclass, constructors of a superclass are

not inherited by its subclasses.

• You must define a constructor for a class or use the default

constructor added by the compiler.

• The statement
super();

calls the superclass’s constructor.

• If the class declaration does not explicitly designate the
superclass with the extends clause, then the class’s superclass

is the Object class.

11/5/2008

15

Lecture 9 Object-Oriented Programming 29

Abstract Superclasses and Abstract

Methods

• When we define a superclass, we often do not

need to create any instances of the superclass.

• Depending on whether we need to create instances

of the superclass, we must define the class

differently.

• We will study examples based on the Student

superclass defined earlier.

Lecture 9 Object-Oriented Programming 30

Definition: Abstract Class

• An abstract class is a class

– defined with the modifier abstract OR

– that contains an abstract method OR

– that does not provide an implementation of an inherited abstract method

• An abstract method is a method with the keyword abstract, and it ends with a

semicolon instead of a method body.

– Private methods and static methods may not be declared abstract.

• No instances can be created from an abstract class.

11/5/2008

16

Lecture 9 Object-Oriented Programming 31

Case Study - Case 1

• Student Must Be Undergraduate or Graduate

– If a student must be either an undergraduate or a

graduate student, we only need instances of

UndergraduateStudent or GraduateStudent.

– Therefore, we must define the Student class so that no

instances may be created of it.

Lecture 9 Object-Oriented Programming 32

Case Study - Case 2

• Student Does Not Have to Be Undergraduate or

Graduate.

• In this case, we may design the Student class in

one of two ways.

– We can make the Student class instantiable.

– We can leave the Student class abstract and add a third

subclass, OtherStudent, to handle a student who does

not fall into the UndergraduateStudent or

GraduateStudent categories.

11/5/2008

17

Lecture 9 Object-Oriented Programming 33

Inheritance as Form of Abstraction

• The root of a class hierarchy is the most general object,

because it is the superclass to every other object in the

hierarchy

– can always say much more about how a subclass behaves than how

its superclass behaves

– e.g., we can say more about how a Van behaves than how a Car

behaves!

Inheritance: extend classes by adding methods
and fields

Lecture 9 Object-Oriented Programming 34

Inherit This!
5 things you might find in an Inheritance Hierarchy:

1) superclass is too general to declare all behaviors, so each subclass adds

its own behavior

2) superclass legislates an abstract behavior and therefore delegates

implementation to subclasses

3) superclass specifies behavior, subclasses inherit behavior

4) superclass specifies behavior, subclasses can choose to override behavior

– just because a subclass inherits a method doesn’t mean that it must act in the

same way as its superclass

– subclass can choose to reject its superclass’ implementation of any method and

“do it my way”

5) superclass specifies behavior, subclasses can choose to override behavior

in part

– called partial overriding

11/5/2008

18

Lecture 9 Object-Oriented Programming 35

Is-a Versus Has-a Relationships

• Confusing has-a and is-a leads to misusing inheritance

• Model a has-a relationship with an attribute (variable)

public class C { ... private B part; ...}

• Model an is-a relationship with inheritance

– If every C is-a B then model C as a subclass of B

– Show this: in C include extends B:

public class C extends B { ... }

Lecture 9 Object-Oriented Programming 36

A Superclass and a Subclass: Code

Example

• Consider two classes: Computer and Laptop

• A laptop is a kind of computer: therefore a subclass

variables of Computer

and all subclasses

additional variables for
class Laptop

(and its subclasses)

methods of Computer

and all subclasses

additional Methods for
class Laptop

(and its subclasses)

11/5/2008

19

Lecture 9 Object-Oriented Programming 37

Illustrating Has-a with
Computer

public class Computer {

private Memory mem;

...

}

public class Memory {

private int size;

private int speed;

private String kind;

...

}

A Computer has only one Memory

But neither is-a the other

Lecture 9 Object-Oriented Programming 38

Initializing Data Fields in a

Subclass

• What about data fields of a superclass?
– Initialize them by invoking a superclass constructor with the

appropriate parameters

• If the subclass constructor skips calling the superclass ...

– Java automatically calls the no-parameter one

• Point: Insure superclass fields initialized before

subclass starts to initialize its part of the object

11/5/2008

20

Lecture 9 Object-Oriented Programming 39

Example of Initializing Subclass

Data
public class Computer {
private String manufacturer; ...
public Computer (String manufacturer, ...) {
this.manufacturer = manufacturer; ...

}
}

public class Laptop extends Computer {
private double weight; ...
public Laptop (String manufacturer, ...,

double weight, ...) {
super(manufacturer, ...);
this.weight = weight;

}
}

Lecture 9 Object-Oriented Programming 40

Method Overriding

• If subclass has a method of a superclass (same signature),

that method overrides the superclass method:

public class A { ...
public int M (float f, String s) { bodyA }

}

public class B extends A { ...
public int M (float f, String s) { bodyB }

}

• If we call M on an instance of B (or subclass of B), bodyB runs

• In B we can access bodyA with: super.M(...)

• The subclass M must have same return type as superclass M

11/5/2008

21

Lecture 9 Object-Oriented Programming 41

Rules for Overriding

• Arguments must be the same, and return

types must be compatible.

• The method cannot be less accessible.

– Public � Protected � Private (not allowed)

– Private � Protected � Public

Lecture 9 Object-Oriented Programming 42

Method Overloading

• Method overloading: multiple methods ...

– With the same name

– But different signatures

– In the same class

• Constructors are often overloaded

• Example:

– MyClass (int inputA, int inputB)

– MyClass (float inputA, float inputB)

11/5/2008

22

Lecture 9 Object-Oriented Programming 43

Example of Overloaded Constructors

public class Laptop extends Computer {
private double weight; ...
public Laptop (String manufacturer,

String processor, ...,
double weight, ...) {

super(manufacturer, processor, ...);
this.weight = weight;

}

public Laptop (String manufacturer, ...,
double weight, ...) {

this(manufacturer, “Pentium”, ...,
weight, ...);

}
}

Lecture 9 Object-Oriented Programming 44

Rules of Overloading

• The return types can be different..

• You can vary the access levels in any

direction.

11/5/2008

23

Programming Example

• A Company has a list of Employees. It asks you to
provide a payroll sheet for all employees.

– Has extensive data (name, department, pay amount,
…) for all employees.

– Different types of employees – manager, engineer,
software engineer.

– You have an old Employee class but need to add very
different data and methods for managers and engineers.

• Suppose someone wrote a name system, and already provided
a legacy Employee class. The old Employee class had a
printData() method for each Employee that only printed the
name. We want to reuse it, and print pay info.

Lecture 9 45Object-Oriented Programming

public … main(…){

Employee e1…("Mary","Wang");

...

e1.printData();

// Prints Employee names.

...

}

Employee e1

lastName
firstName

printData

Encapsulation Message passing "Main event loop"

private:

REVIEW PICTURE

Lecture 9 46Object-Oriented Programming

11/5/2008

24

Employee class

class Employee {

// Data

private String firstName, lastName;

// Constructor

public Employee(String fName, String lName) {

firstName= fName; lastName= lName;

}

// Method

public void printData() {

System.out.println(firstName + " " + lastName);}

}

This is a simple super or base class.

Lecture 9 47Object-Oriented Programming

Inheritance

Class Employee

firstName

lastName

printData()

Class Manager

salary

firstName

lastName

Class Engineer

hoursWorked
wages

firstName

lastName

printData()

getPay()

is-a

printData()

getPay()

Already written:

is-a

You next write:Lecture 9 48Object-Oriented Programming

11/5/2008

25

Engineer class

class Engineer extends Employee {

private double wage;

private double hoursWorked;

public Engineer(String fName, String lName,

double rate, double hours) {

super(fName, lName);

wage = rate;

hoursWorked = hours;

}

public double getPay() {

return wage * hoursWorked;

}

public void printData() {

super.printData(); // PRINT NAME

System.out.println("Weekly pay: $" + getPay(); }

}

Subclass or (directly) derived class

Lecture 9 49Object-Oriented Programming

Manager class

class Manager extends Employee {

private double salary;

public Manager(String fName, String lName, double sal){

super(fName, lName);

salary = sal; }

public double getPay() {

return salary; }

public void printData() {

super.printData();

System.out.println("Monthly salary: $" + salary);}

}

Subclass or (directly) derived class

Lecture 9 50Object-Oriented Programming

11/5/2008

26

Inheritance…

Class Manager

Salary

firstName

lastName

printData

getPay

Class SalesManager

firstName

lastName

printData

getPay

Salary

salesBonus

is-a

Lecture 9 51Object-Oriented Programming

SalesManager Class

class SalesManager extends Manager {

private double bonus; // Bonus Possible as commission.

// A SalesManager gets a constant salary of $1250.0

public SalesManager(String fName, String lName, double b) {

super(fName, lName, 1250.0);

bonus = b; }

public double getPay() {

return 1250.0; }

public void printData() {

super.printData();

System.out.println("Bonus Pay: $" + bonus; }

}

(Derived class from derived class)

Lecture 9 52Object-Oriented Programming

11/5/2008

27

Main method

public class PayRoll {

public static void main(String[] args) {

// Could get Data from tables in a Database.

Engineer fred = new Engineer("Fred", "Smith", 12.0, 8.0);

Manager ann = new Manager("Ann", "Brown", 1500.0);

SalesManager mary= new SalesManager("Mary", "Kate", 2000.0);

// Polymorphism, or late binding

Employee[] employees = new Employee[3];

employees[0]= fred;

employees[1]= ann;

employees[2]= mary;

for (int i=0; i < 3; i++)

employees[i].printData();

}

}

Java knows the
object type and
chooses the
appropriate method
at run time

Lecture 9 53Object-Oriented Programming

Output from main method

Fred Smith

Weekly pay: $96.0

Ann Brown

Monthly salary: $1500.0

Mary Barrett

Monthly salary: $1250.0

Bonus: $2000.0

Note that we could not write:

employees[i].getPay();

because getPay() is not a method of the superclass Employee.

In contrast, printData() is a method of Employee, so Java can find the
appropriate version.

Lecture 9 54Object-Oriented Programming

11/5/2008

28

Lecture 9 Object-Oriented Programming 55

Readings

• Book Name: An object Oriented Programming with

JAVA

Author Name: C Thomas WU

Content: Chapter # 13

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by

the following people:

– Aaron Bloomfield (University of Virginia)

– Andy Van Dam (Brown University)

– C Thomas Wu (Naval Postgraduate School)

– MIT-AITI Kenya

Lecture 9 56Object-Oriented Programming

